Collaborative Research: Long-term Carbon Storage Shifts in High-latitude Peatlands with Paleoclimate Change: Linking Peatland Modeling with Paleoecology and Paleohydrology

Lead PI: Dr. Dorothy Marie Peteet

Unit Affiliation: Biology and Paleo Environment, Lamont-Doherty Earth Observatory (LDEO)

September 2010 - August 2015
North America ; Alaska
Project Type: Research

DESCRIPTION: The project proposes a data-model investigation of the relationship between paleoclimate and long-term carbon accumulation in Alaskan Arctic and subarctic peatland. Peat cores will be analyzed using compound-specific isotope and biomarker tracers as well as existing paleoclimate proxies and 14C dating.

OUTCOMES: Completed analyses of three sites and working on the fourth. Evidence shows that the peats experienced climatic shifts at similar times.


National Science Foundation (NSF)




Steve Frolking


University of New Hampshire



Peteet, D.M., J. Nichols, and D.H. Mann, 2019: Holocene vegetation, climate, and carbon history on western Kodiak Island, Alaska. Front. Earth Sci., 7, 61, doi:10.3389/feart.2019.00061.

Treat, C.C., T. Kleinen, N. Broothaerts, A.S. Dalton, R. Dommain, T.A. Douglas, J.Z. Drexler, S.A. Finkelstein, G. Grosse, G. Hope, J. Hutchings, M.C. Jones, P. Kuhry, T. Lacourse, O. Lähteenoja, J. Loisel, B. Notebaert, R.J. Payne, D.M. Peteet, A.B.K. Sannel, J.M. Stelling, J. Strauss, G.T. Swindles, J. Talbot, C. Tarnocai, G. Verstraeten, C.J. Williams, Z. Xia, Z. Yu, M. Väliranta, M. Hättestrand, H. Alexanderson, and V. Brovkin, 2019: Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl. Acad. Sci., 116, no. 11, 4822-4827, doi:10.1073/pnas.1813305116.

Peteet, D.M., 2018: The importance of understanding the Last Glacial Maximum for climate change. In Our Warming Planet: Topics in Climate Dynamics. C. Rosenzweig, D. Rind, A. Lacis, and D. Manley, Eds., Lectures in Climate Change: Volume 1. World Scientific, pp. 331-348, doi:10.1142/9789813148796_0016.

Windham-Myers, L., W.-J. Cai, S.R. Alin, A. Andersson, J. Crosswell, K.H. Dunton, J.M. Hernandez-Ayon, M. Herrmann, A.L. Hinson, C.S. Hopkinson, J. Howard, X. Hu, S.H. Knox, K. Kroeger, D. Lagomasino, P. Megonigal, R.G. Najjar, M.-L. Paulsen, D. Peteet, E. Pidgeon, K.V.R. Schäfer, M. Tzortziou, Z.A. Wang, and E.B. Watson, 2018: Chapter 15: Tidal wetlands and estuaries. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. N. Cavallaro, G. Shrestha, R. Birdsey, M.A. Mayes, R.G. Najjar, S.C. Reed, P. Romero-Lankao, and Z. Zhu, Eds. U.S. Global Change Research Program, pp. 596-648, doi:10.7930/SOCCR2.2018.Ch15.

Nichols, J.E., D.M. Peteet, S. Frolking, and J. Karavias, 2017: A probabilistic method of assessing carbon accumulation rate at Imnavait Creek Peatland, Arctic Long Term Ecological Research Station, Alaska. J. Quat. Sci., 32, no. 5, 579-586, doi:10.1002/jqs.2952.


carbon storage models climate change 14c dating ocean and climate physics paleoclimate peatland hydrology