Collaborative Research: Magnetotelluric and Seismic Investigations of Arc Melt Generation, Deliver and Storage Beneath Okmok Volcano

Lead PI: Kerry Key

Unit Affiliation: Marine and Polar Geophysics, Lamont-Doherty Earth Observatory (LDEO)

July 2017 - July 2018
Inactive
North America ; Aleutian arc ; Okmok Volcano
Project Type: Research

DESCRIPTION: Part 1: The investigators will conduct a magnetotelluric (MT) survey at Okmok volcano in the Aleutian arc in order to characterize the magmatic system beneath the volcano. New onshore passive seismic and MT data and offshore MT data will be collected to test hypotheses regarding the role of slab fluids in arc melt generation, melt migration within the crust, and the crustal magmatic plumbing and storage system beneath an active caldera. The project will support a female early career investigator several graduate and undergraduate students providing the latter hands-on research at sea. Data from this project is planned to be incorporated into undergraduate Earth Sciences courses and presentations.

Part 2:  The Aleutian volcanic arc is a GeoPRISMS primary investigation site that is tectonically active region considered to be ideal for studying arc magmatism. Okmok, an active volcano located in the central Aleutian arc, is only about 100 km from Dutch Harbor making it a logistically advantageous for an amphibious onshore and offshore geophysical imaging of the arc?s magmatic system. Okmok is also selected due to its known volcanic activity, the presence of a crustal magma reservoir, as inferred from previous studies, and the volcanic hazard it presents, as evidenced by the lack of warning prior to 2008 eruption. It has hosted 2 caldera-forming eruptions (CFE) and is representative of volcanoes both within the Aleutian arc and worldwide that experience long periods of effusive eruptions punctuated by much larger explosive CFE. The project will test hypotheses on the role fluids play in melting the mantle wedge and how melts ascend through the corner flow regime of the mantle wedge. It will also test competing hypotheses about melt migration and storage within the upper mantle and crust and how this impacts explosive CFE. Data collected by this project will be used to map seismic velocity and electrical conductivity variations within the arc, providing unique constraints on temperature, mineralogy and fluid content. These constraints will be used to study the mantle melt flux, its possible storage at the base of the crust, the distribution of partial melt/magma bodies in the mid-upper crust, and the thermal and mechanical properties of the upper crust beneath the caldera. Broader Impacts:  The proposed work would help improve our understanding of magma storage and transport and its implications on volcanic hazards at Okmok volcano. A female early career investigator and three graduate students (1 Scripps; 2 UW-Madison) would be supported. Seven undergraduate students would be supported (partially through funds from this project and via Scripps NSF REU supported SURF program) to participate in onshore/offshore fieldwork. Data from this project will be incorporated into undergraduate Earth Sciences courses and presentations will be given at local K-12 schools and via live webinars to a few Alaskan schools. A short course on MT methods will be given at UW-Madison and a computer display for this project will be created for the UW Geology Museum's Active Earth display.