Dr Olivia E. Clifton

Pronouns: she/her

Associate Research Scientist, Center for Climate Systems Research (CCSR), Columbia Climate School

NASA Goddard Institute for Space Studies
2880 Broadway
New York, NY 10025


Dr. Olivia Clifton is an atmospheric scientist at NASA Goddard Institute for Space Studies (GISS) and the Center for Climate Systems Research at Columbia University in New York, New York. Dr. Clifton uses numerical models and observations to advance understanding of the intersections between air pollution and climate.  A lot of Dr. Clifton's research is on the dry deposition of reactive gases and aerosols and impacts on air pollution, vegetation, and climate. Before Dr. Clifton's current role, she was a NASA Postdoctoral Program fellow at GISS and an Advanced Study Program (ASP) postdoctoral fellow at the National Center for Atmospherric Research (NCAR) in Boulder, Colorado. Dr. Clifton's PhD is from Columbia University.


  1. Clifton, O. E., Bauer, S. E., Tsigaridis, K., Aleinov, I., Cowan, T. G., Faluvegi, G., & Kelley, M. Influence of more mechanistic representation of particle dry deposition on 1850-to-2000 changes in global aerosol burdens and radiative forcing, in review at Journal of Advances in Modeling Earth Systems
  2. Clifton, O. E., Schwede, D., Hogrefe, C., Bash, J. O., Bland, S., Cheung, P., Coyle, M., Emberson, L., Flemming, J., Fredj, E., Galmarini, S., Ganzeveld, L., Gazetas, O., Goded, I., Holmes, C. D., Horváth, L., Huijnen, V., Li, Q., Makar, P. A., Mammarella, I., Manca, G., Munger, J. W., Pérez-Camanyo, J. L., Pleim, J., Ran, L., San Jose, R., Silva, S. J., Staebler, R., Sun, S., Tai, A. P. K., Tas, E., Vesala, T., Weidinger, T., Wu, Z., & Zhang, L. (2023). A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4). Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-23-9911-2023
  3. Clifton, O. E., Patton, E. G., Barth, M., Orlando, J., Wang, S., & Baublitz, C. (2023). Influence of organized turbulence on OH reactivity at a deciduous forest. Geophysical Research Letters. https://doi.org/10.1029/2022GL102548
  4. Clifton, O. E., Patton, E. G., Wang, S., Barth, M., Orlando, J., & Schwantes, R. H. (2022). Large Eddy Simulation for Investigating Coupled Forest Canopy and Turbulence Influences on Atmospheric Chemistry. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2022MS003078
  5. Galmarini, S., Makar, P., Clifton, O. E., Hogrefe, C., Bash, J., Bianconi, R., Bellasio, R., Bieser, J., Butler, T., Ducker, J., Flemming, J., Hozdic, A., Holmes, C., Kioutsioukis, I., Kranenburg, R., Lupascu, A., Perez-Camanyo, J. L., Pleim, J., Ryu, Y.-H., San Jose, R., Schwede, D., Silva, S., Garcia Vivanco, M., & Wolke, R. (2021). Technical Note – AQMEII4 Activity 1: Evaluation of Wet and Dry Deposition Schemes as an Integral Part of Regional-Scale Air Quality Models. Atmospheric Chemistry and Physics.https://doi.org/10.5194/acp-21-15663-2021
  6. Clifton, O. E., & Patton, E. G. (2021). Does Organization in Turbulence Influence Ozone Removal by Deciduous Forests? Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2021JG006362
  7. He, C., Clifton, O. E., Felker-Quinn, E., Fulgham, S. R., Juncosa Calahorrano, J., Lombardozzi, D., Purser, G., Riches, M., Schwantes, R., Tang, W., Poulter, B., & Steiner, A. L. (2021). Interactions between Air Pollution and Terrestrial Ecosystems: Perspectives on Challenges and Future Directions. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-20-0066.1
  8. Clifton, O. E., D. L. Lombardozzi, A. M. Fiore, F. Paulot, & L. W. Horowitz (2020). Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abc3f1
  9. Clifton, O. E., F. Paulot, A. M. Fiore, L. W. Horowitz, G. Correa, S. Fares, I. Goded, A. H. Goldstein, C. Gruening, A. J. Hogg, B. Loubet, I. Mammarella, J. W. Munger, L. Neil, P. Stella, J. Uddling, T. Vesala, & E. Weng (2020). Influence of dynamic ozone dry deposition on ozone pollution. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2020JD032398
  10. Baublitz, C. B., A. M. Fiore, O. E. Clifton, J. Mao, J. Li, G. Correa, D. Westervelt, L. W. Horowitz, F. Paulot, R. Commane, & A. P. Williams (2020). Sensitivity of tropospheric ozone over the Southeast USA to dry deposition. Geophysical Research Letters. https://doi.org/10.1029/2020GL087158
  11. Clifton, O. E., A. M. Fiore, W. J. Massman, C. B. Baublitz, M. Coyle, L. Emberson, S. Fares, D. K. Farmer, P. Gentine, G. Gerosa, A. Guenther, D. Helmig, D. L. Lombardozzi, J. W. Munger, E. G. Patton, S. E. Pusede, D. B. Schwede, S. J. Silva, M. Sörgel, A. L. Steiner, & A. P. K. Tai (2020). Dry deposition of ozone over land: processes, measurement and modeling. Reviews of Geophysics. https://doi.org/10.1029/2019RG000670
  12. Clifton, O. E., A. M. Fiore, J. W. Munger, & R. Wehr (2019). Spatiotemporal controls on observed daytime ozone deposition velocity over Northeastern U.S. forests during summer. Journal of Geophysical Research: Atmospheres.https://doi.org/10.1029/2018JD029073
  13. Fiore, A. M, E. V. Fischer, S. Pandey Deolal, O. Wild, D. Jaffe, J. Staehelin, O. E. Clifton, et al. (2018). Peroxy acetyl nitrate (PAN) measurements at northern mid-latitude mountain sites in April: A constraint on continental source-receptor relationships. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-18-15345-2018
  14. Rieder, H., A. M. Fiore, O. E. Clifton, G. Correa, L. W. Horowitz, & V. Naik (2018). Combining model projections with site-level observations to estimate changes in distributions and seasonality of ozone in surface air over the USA. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2018.07.042
  15. Clifton, O. E., A. M. Fiore, J. W. Munger, S. Malyshev, L. W. Horowitz, E. Shevliakova, F. Paulot, L. T. Murray, & K. L. Griffin (2017). Interannual variability in ozone removal by a temperate deciduous forest. Geophysical Research Letters.https://doi.org/10.1002/2016GL070923
  16. Clifton, O. E., A. M. Fiore, G. Correa, L. W. Horowitz, and V. Naik (2014). Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States. Geophysical Research Letters. https://doi.org/10.1002/2014GL061378
  17. Fiore, A. M., J. T. Oberman, M. Y. Lin, L. Zhang, O. E. Clifton, D. J. Jacob, V. Naik, L. W. Horowitz, J. P. Pinto, & G. P. Milly (2014). Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2014.07.045